UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

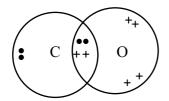
Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

- 1 (a) (i) enthalpy/energy change/released when 1 mol of ions... [1] in the gas phase (are dissolved in) water [1]
 - (ii) $Mg^{2+}(g) + aq (or H_2O) \rightarrow Mg^{2+}(aq) or [Mg(H_2O)_6]^{2+}$ [1]
 - (iii) Mg²⁺ has a smaller radius/size or greater charge density than Ca²⁺ (ions required) [1]
 - (iv) O^{2-} reacts with water to give OH^- or equation: $O^{2-} + H_2O \rightarrow 2OH^-$ [1]
 - **(b)** (apparatus: "insulated" calorimeter, water and thermometer)
 - measure (known volume/mass of) water *or* stated volume of water (into calorimeter)
 - take the temperature (of the water NOT the MgCl₂)
 - weigh out known mass of MgCl₂ or stated mass of MgCl₂
 - take final/highest/constant temperature or record temperature change/rise
 4 × [1]
 [4]
 - (c) (i) $\Delta H_{sol}^{e} = 641 801 = -160 \text{ kJ mol}^{-1}$ [1]
 - (ii) $\Delta H^{e}_{hyd} = (1890 2526 160)/2 = -398 \text{ kJ mol}^{-1}$ [2]

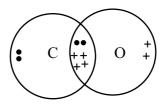
(d)

- solubility: MgSO₄ > BaSO₄ or decreases down the group
- because ΔH_{sol} is more endothermic for BaSO₄ or more exothermic for MgSO₄
- due to larger r_{ion} or smaller charge density of Ba²⁺ (ion has to be mentioned)
- leading to smaller LE and HE or LE and HE decrease
- but difference in HE (between Mg²⁺ and Ba²⁺) is larger than the difference in LE (between MgSO₄ and BaSO₄)

or HE is dominant or HE decreases more than LE


any 4 points [4]

[Total: 16]


[4]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

2 (a) (i)

or

[1]

(ii) incomplete combustion (of hydrocarbon fuels) or insufficient O₂/air

[1]

(iii) NO + CO
$$\rightarrow \frac{1}{2}N_2 + CO_2$$

or CO + $\frac{1}{2}O_2 \rightarrow CO_2$
equation needs to be balanced

[1] [3]

(b)
$$\Delta H = 394 - 2 \times 111 = (+)172 \text{ kJ mol}^{-1}$$

[2]

(c) (i) ligand exchange/displacement/replacement/substitution

[1]

(ii)

- d-orbitals are split (by the ligand field) or orbitals near ligands are at higher energy
- the splitting/energy gap depends on the ligands (surrounding the ion) *or* the metal (ion)
- when <u>an electron</u> moves from lower to higher orbital/energy level or is promoted/ excited
- light/a photon is absorbed or colour seen/reflected/transmitted is complement of colour absorbed ("emitted" contradicts this mark)
- different energy gap means different frequency absorbed means different colour

5 × [1]

(iii) from rows 1 and 3: rate3/rate1 = 2.0 which also equals [[complex]₃]/[[complex]₁] [1] (or this working mark can be awarded for any valid calculation that shows that order w.r.t. complex is 1)

Thus order w.r.t. [complex] = 1 **and** order w.r.t. [CO] is zero

[1] [1]

rate equation: rate = k[complex]

(iv) mechanism 2 [1] it's the only one that does **not** involve CO in the rate determining step *or* rate depends on [complex] only. [1]

[11 max 10]

[Total: 15]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

3 (a) (i) ketone, alcohol, alkene, arene/aryl/benzene/phenyl. any three [2] (if more than 3 are given, mark the <u>first 3</u> the candidate has written)

(ii) (2,4-)DNPH/Brady's or FeCl₃ (aq or neutral) or Br₂(aq) [1]

Lawsone ⇒ orange/red, or purple/violet with A, or white ppt with A, (not yellow) ppt

and A ⇒ nothing or and nothing with Lawsone or and decolourises with Lawsone [1]

(iii) NaBH₄ or LiAlH₄ or SnC l_2 or Na + ethanol or any suitable reducing agents with $E^{\circ} < 0.2 \text{ V}$, e.g. SO₂. **NOT** H₂ + Ni etc. [1]

(b) (i)
$$E_{cell} = 1.33 - 0.36 = (+)0.97 (V)$$
 [1]

(ii)
$$Cr_2O_7^{2-} + 8H^+ + 3C_{10}H_8O_3 \rightarrow 2Cr^{3+} + 7H_2O + 3C_{10}H_6O_3$$
 3:1 ratio [1] balancing [1]

(iii) =
$$0.05 \times 7.5/1000 = 3.75 \times 10^{-4} \text{ mol}$$
 [1]
 $n(\mathbf{A}) = 3 \times 3.75 \times 10^{-4}$
= $1.125 \times 10^{-3} \text{ in } 20 \text{ cm}^3$
[A] = $5.63 \times 10^{-2} \text{ mol dm}^{-3}$ (allow 5.6, 5.62, 5.625 etc.) [1]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

(c) (i) compound C is [1]

(ii) compound \mathbf{D} is

(iii) mechanism: 3 curly arrows in **B** or correct intermediate anion [1] a curly arrow from an O⁻ or an oxygen with a lone pair to the carbon of the C=O group in CH₃COC*l*, and a second curly arrow breaking the C-C*l* bond [1]

[4 max 3]

[Total: 14]

	Paper	Syllabus
GCE A LEVEL – May/June 2012 9701	42	9701

(a) volatility: $Cl_2 > Br_2 > I_2$ or boiling points: $Cl_2 < Br_2 < I_2$ or Cl_2 is (g); Br_2 is (l); I_2 is (s) [1] more electrons in X₂ down the group or more shells/bigger cloud of electrons [1] so there's greater van der Waals/dispersion/id-id/induced/temporary dipole force/attraction [1] [3] (b) (i) $H_2O > H_2S$ (see * below for mark) due to H-bonding in H₂O (none in H₂S) [1] diagram minimum is: $H_2O^{\delta-...\delta+}H-OH$ or $H_2O:H-OH$ [allow (+) for $\delta+$] [1] (ii) CH₃-O-CH₃ > CH₃CH₂CH₃ (see * below for mark) due to dipole in CH_3 -O- CH_3 (O is δ - not needed, but O is δ + negates) or CH_3 OCH₃ is polar [1] * correct comparison of boiling points for **both** [1] [4] (c) SF₆ has 6 bonding pairs/bonds and <u>no lone pairs</u> (bonds can be read into a diagram e.g. S-F, but 'no lone pairs' can only be read into a diagram showing 6 bonded pairs of electrons. [1] clear diagram or 'shape is octahedral' [1] [2] [Total: 9] 5 (a) acidities: $CHCl_2CO_2H > CH_2ClCO_2H > CH_3CO_2H$ [1] [1] due to Cl being (more) electronegative/electron withdrawing (than H). this stabilises the anion or weakens the O-H bond [1] [3]

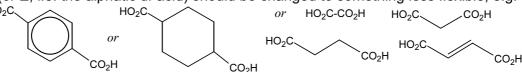
Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

(b)

first compound	second compound	test	observation with first compound	observation with second compound
NH ₂	\sim NH ₂	Br ₂ (aq) [not (I)]	none	decolourises/ white ppt.
		NaNO ₂ + HC <i>l or</i> HNO ₂ followed by phenol (+ NaOH)	none	yellow/orange/red ppt.
		AgNO ₃ (aq)	(immediate) white ppt.	none
CH ₃ CH ₂ COC <i>l</i>	CH₃COCH₂C1	add H ₂ O/ROH	steamy/misty/ white fumes	none
		(2,4-)DNPH	none	orange ppt.
		I₂/OH⁻	none	yellow ppt./ antiseptic smell
		I ₂ /OH ⁻	none	yellow ppt./ antiseptic smell
CH CH CHO		Fehling's/Benedict's solution + warm	red ppt.	none
CH₃CH₂CHO	CH₃COCH₃	Tollens' reagent + warm	silver/black ppt.	none
		$Cr_2O_7^{2-} + H^+ + warm$	turns green	no change
		MnO ₄ ⁻ + H ⁺ + warm	decolourises	no change

[3]
[3]
Īıī
[י]
[7]

(c) (i) condensation [1]


(ii) (in parts (ii) and (iii), allow structural formulae instead of skeletal formulae) [1] + [1] or NaO

(N.B. letters **E** and **F** may be reversed.)

(iii) make acyl chloride from **F** (if not already there) [1] add that to a solution of **E** in NaOH(aq) [1]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

(iv) F (or E, i.e. the alphatic di-acid) should be changed to something less flexible, e.g.

(but not HO₂C(CH₂)₃CO₂H or longer) (any size ring with n < 6; any orientation)

(ignore side chains: length of chain is the important feature)

or allow a tri-carboxylic acid (or triphenol), i.e. one that will allow cross linking [1] [6]

[Total: 16]

6 (a)

amino acid	structure	type of interaction
alanine	H ₂ NCH(CH ₃)CO ₂ H	van der Waals' (NOT hydrophobic)
cysteine	H ₂ NCH(CH ₂ SH)CO ₂ H	disulfide bonds or S-S
lysine	H ₂ NCH((CH ₂) ₄ NH ₂)CO ₂ H	ionic/electrovalent hydrogen/H bonds
serine	H ₂ NCH(CH ₂ OH)CO ₂ H	hydrogen/H bonds

[3] [3]

(b) Iron – in haemoglobin *or* **red** blood cells; transport of oxygen/CO₂ or in myoglobin; transport of oxygen (in muscle) or in cytochromes; cell respiration

[1]

Potassium – in cell membranes/enzymes; controlling the flow of ions/water into or out of cells or – in nerves; controlling nerve impulses [1]

or – Na⁺ – K⁺ pump; nerve impulses/control of cell volume/active transport

Zinc acting as a cofactor in enzymes (or a named one, e.g. carbonic anhydrase); or in making of insulin

[1] [3]

(c) (i) ATP +
$$H_2O \rightarrow ADP + Pi$$
 [1]

(ii) Hydrolysis *or* nucleophilic substitution [1]

[2]

(ii) Hydrogen bonding and reference to water or bonding in mucous molecules [1]

[2]

[Total: 10]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

7 (a) (i) + (ii) any two from:

- The nature/electronegativity of the atom the proton is attached to *or* is near *or* the electronic/chemical environment of the proton
- The number/spin states of adjacent protons or protons attached to adjacent atoms
- The (strength of) the applied/external magnetic field [1] + [1] [2]

(b) (i) Peak at
$$1.26\delta = (3 \times) CH_3$$
 or methyl and Peak at $2.0\delta = -O-H$ or alcohol [1]

- (c) (i) Phosphorus it has more electrons *or* high electron density (NOT phosphate) [1]
 - (ii) H atoms don't have enough electron density to show up *or* they only contain one e⁻ [1] [2]

[Total: 10]

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2012	9701	42

- 8 (a) (i) hydrophilic in area C [1] fat-soluble in area B
 - (ii) A region would be exposed to the atmosphere/water/enzymes or nothing the molecule can attach to at A[1]
 - (b) (i) amide/peptide or ester [1]
 - (ii) hydrolysis [1]

(iii)

[1] + [1] **[4]**

(c) (i) measured in nm, i.e. between 1 and $1000 \,\mathrm{nm}$ (or $10^{-9} - 10^{-6} \,\mathrm{m}$). Any quoted value or range between these limits is acceptable [1]

- (ii) One or both of the –OH groups (NOT just 'oxygen' or 'O') [1]
- (iii) PEG can H-bond (with water) because it is hydrophilic/contains an OH group/contains lots of oxygen atoms [1]

[Total: 10]